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T CELL STATE PROFILING USING RNA MODELS

Introduction 
Tumor Infiltrating Lymphocytes (TILs) detect tumors and, most 
importantly for human health, destroy them. As such, the 
presence of TILs, in particular CD8+ T cells, has been studied 
in cancer and found to be prognostic in a range of tumor 
types.1-5 However, these cells sometimes fail to effectively 
eliminate cancer cells.6 One cause of this immunity failure 
is T cell dysfunction, in particular T Cell Exhaustion.7 In an 
exhausted state8, T cells are unable to fully resolve infections 
or eliminate cancer cells due to excessive antigen stimulation.9 
Recently, however, researchers have had success in regaining 
cytotoxicity from exhausted T cells in mice and humans using 
checkpoint inhibitors.10,11

Cell therapies, in particular Chimeric Antigen Receptor T 
cell (CAR-T) therapies, seek to leverage the tumor clearance 
power of TILs. In the most prevalent paradigm of CAR-T, 
autologous T cells are isolated from a patient and engineered 
to respond to a specific epitope, such as CD19.12 This type of 
therapy has been primarily used to treat B cell malignancies 
and has shown robust responses with high efficacy in some 
indications, but not in others.13 To address current challenges, 
researchers continue to refine their understanding of positive 
and negative characteristics of CAR-T therapeutic products.14 
For example, dysfunction and exhaustion of CAR-Ts in the 
apheresis, manufactured, and administered products has been 
associated with non-response.15,16 In addition, other T cell 
states such as activation status and memory status can also 
affect cytotoxicity17, and subsequently the clearance of both 
blood malignancies and solid tumors. 

It is clear that the state of endogenous and engineered T cells 
can affect therapy success in patients. To enable researchers 
to better characterize T cells, we have created five Health 
Expression Models that describe different states of T cells. 
The Unstimulated Model characterizes T cells that have yet to 
encounter antigen. The Activation Model characterizes T cells 
that have been subject to engagement of cognate antigen and 
costimulation. The Exhaustion Model characterizes T cells 
that have been over-stimulated and have reduced cytotoxic 
function. Additionally, the Central Memory and Effector 
Memory Models characterize two memory T cell subtypes 
critical to the adaptive immune response. These RNA models 
are used to measure the (dys)functional states of T cells and 
as such can serve as more convenient surrogates for complex, 

multi-faceted functional assays. Since these models are an 
RNAseq-based technology, T cells functional status can be 
characterized in FFPE, previously impossible. In this work, 
we show the performance of these five T cell state Health 
Expression Models.

Methods and Results 
Exhaustion Model Performance
Un-stimulated, stimulated and exhausted CD8+ T cells 
were derived from human Naive CD8+ T cells by repeated 
activation with anti-CD3/anti-CD28/anti-CD2 tetramers 
over two weeks. Eight time points were investigated 
(unstimulated/Day 0, 2, 4, 6 ,8, 10, 12 and 14). In addition, 
cells from each time point were harvested and stained for cell 
surface marker expression of inhibitory receptors Programmed 
cell death protein 1 (PD-1), Lymphocyte-activation gene 
3 (LAG3) and T-cell immunoglobulin and mucin-domain 
containing-3 (TIM3). The percentage of cells triple-positive 
for all three markers was measured by flow cytometry. Finally, 
the concentration of cytokines Interferon Gamma (IFNγ) and 
Interleukin-2 (IL2), were measured in the cell supernatant at 
each time point.

A hallmark of T cell exhaustion is the progressive increase in 
the expression of inhibitory receptors such as PD-1, TIM3 
and LAG38, coupled with the progressive loss of proliferative 
and cytotoxic potential and a later stabilization or decrease in 
inhibitory receptor expression once exhaustion is established. 
Our results mirror this as shown in Figure 1, where the 
percentage of cells co-expressing these three inhibitory 
receptors increases from day 0 (unstimulated) through 
day 10 and then begins to decrease as the cells become 
almost completely exhausted. However, this metric alone is 
not a sufficient measure as both peak activation and peak 
exhaustion both show high levels of inhibitory receptor co-
expression.

Upon activation, CD8+ T cells begin to secrete IFNγ and 
IL2, however with overstimulation the cells begin to become 
exhausted. Typically, IL2 production is lost early in the 
development of exhaustion, followed by decreased IFNγ 
production. This exact result is shown in Figure 1 where the 
production of IL2 is the greatest at day 4 (y-axis - percentage 



of max readout), when nearly all cells are activated, and 
decreases greatly at day 6 as cells develop an exhausted cell 
state. The production of IL2 is nearly absent at day 8, the 
first day where the largest proportion of cells are identified 
as exhausted as shown in Figure 1 - day 8. In parallel, INFγ 
production follows IL2, however peak production is seen at 
day 6 and decreases greatly by day 8 and falls precipitously 
until it is nearly absent at day 12. As mentioned above, 
inhibitory receptor expression alone is not sufficient to 
determine the exhaustion state of a cell (or proportion 
of exhaustion in a group of cells). However, when taken 
together with the measurement of secreted cytokine levels, 
inhibitory receptor expression enables one to approximate 
the exhaustion state of a group of cells. This sort of multi-
faceted approach is laborious. In addition, these types of 
measurements are not feasible in FFPE tumor samples. To 
address these challenges, we propose our Exhaustion Model 
as a new method to provide a direct, accurate, and precise 
measurement of exhaustion.

As CD8+ T cells are activated, one would expect to see state 
changes from Unstimulated to Activated, and as stimulation 
continues, from Activated to Exhausted. Figure 1 shows the 
results of the above experiments including data for T cell 
states (Unstimulated, Activation, and Exhaustion), percent 
max readout of cytokine concentration and expression of 
inhibitory receptors. We attempted to determine the cell 
states of the CD8+ T cells at each time point using our 
Health Expression Models. The bar chart shows that at day 0 

(unstimulated) all of the cells are identified as “Unstimulated”, 
however as CD8+ T cells are successively stimulated, starting 
at day 2, there is a concomitant increase in the percentage of 
cells identified as “Activation” through day 4. Even at day 6, 
the majority of cells are identified as “Activation”. In contrast, 
day 6 begins to show an increase in the “Exhaustion” state 
model and the proportion of this cell state model increases 
all the way through to the final time point at day 14. The 
x-axis provides the T Cell State Profiling Score (out of 1) for 
each of the cell states at each time point. The results of this 
experiment show that our T cell state models are more robust 
than cytokine level or inhibitory receptor expression alone, 
and can be used to assess the contribution of each cell model 
in a pure mixture of in vitro CD8+ T cells. 

T Cell State Estimations of CD8 and CD4
To test our models on in vivo samples, blood was drawn 
from multiple donors and cell types were isolated using flow 
cytometry. CD8+ Naive (Naive; n=5), CD8+ Effector Memory 
(EM; n=5) and CD8+ Central Memory (CM; n=3) populations 
were isolated and sequenced to test the effectiveness of our 
models in identifying these CD8+ T cell subtypes. Figure 2, 
below, shows that our cell differentiation models are able 
to identify pure CD8+ subtypes with high accuracy (first 
three bars; Naive = ~90%, EM = ~70% and CM = ~80%) 
in representative samples. We also applied our models to 
purified CD8+ cells derived from healthy donor PBMCs (n=3) 
in order to determine the percentages of CD8+ cell subtypes. 
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Figure 1. Levels of T 
Cell States, Cytokines, 
and Inhibitory 
Receptors in CD8+ T 
Cells during chronic 
stimulation measured 
using traditional 
functional assays (left 
axis) and Cofactor’s 
technology (right axis).
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Figure 2 (bars 7-9) shows the percentage of these cell 
subtypes. The approximate percentages of CD8+ cell subtypes 
in healthy donors have been reported as Naive = 60% + 
15%, EM = 30 + 15%, CM = 10% + 5%, Activated = 0% and 
Exhausted = 0%.18 The percentages estimated using our state 
models corroborate these findings with Naive approximately 
50%, EM between 20-45%, and CM between 10-25%.  A 
similar experiment was performed as above, but using CD4+ 
cells from PBMCs of healthy donors (n=3). The approximate 
percentages of CD8+ cell subtypes in healthy donors have 
been reported as Naive = 50% + 12%, EM = 20% + 10%, CM 
= 30% + 5%, Activated = 0% and Exhausted = 0%. Figure 2 
(bars 4-6) show that our models can distinguish cell states in 
both CD4+ and CD8+ T cells and corroborate the approximate 
percentages seen in CD4+ T cells from healthy donor PBMCs 
with Naive approximately 35-50%, EM between 0-15%, and 
CM between 25-30%. These results exhibit the validity of 
using cell state models to estimate T cell subtype abundance.

T Cell Exhaustion Estimation in Admixtures
Our models have shown to be effective in estimating the 
cell states in CD4+ and CD8+ T cells in purified cell mixes in 
vitro and in vivo. However, we wanted to further investigate 
the use of our exhaustion model in increasingly complex 
samples. Accordingly, we mixed sequencing data from positive 
control exhaustion samples into non-exhausted negative 
control samples at increasing proportions (0%, 25%, 50% 
and 100%). Negative samples included the CD45- (non-
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Figure 2. Levels of T Cell States in Purified PBMC Cell Types. Figure 3. T Cell Exhaustion Estimation in Admixtures of Control 
Exhaustion Samples and Non-exhausted Negative Control Samples.

immune) component of dissociated tumor cell samples (DTCs) 
from Lung (Lung), Melanoma (Mel) and Ovarian (OV) and an 
immune cell mix from healthy PBMC donors (Healthy PBMCs). 
The positive exhaustion sample was the fully exhausted 
timepoint (day 14) of the stimulated CD8+ T cell experiment 
in Figure 1. The CD45- component from cancer samples and 
immune cells from PBMCs is expected to have no exhaustion 
component and thus serves as a negative exhaustion data 
set in the context of complex samples and several immune 
cell types. Figure 3 shows the comparison between the 
fraction of exhausted cells estimated by our models (y-axis), 
at each dilution level, versus the known percent of exhausted 
cells from the data mix reported above (x-axis). As shown in 
Figure 3, our model estimations match the expected readouts 
(Expected - black line). The Exhaustion Model is unaffected by 
noise from non-exhausted data (CD45- and PBMC immune 
cell mixes) and is able to estimate, with high accuracy and 
dynamic range, the fraction of exhaustion that exists in 
complex cancer samples from multiple indications. Next, we 
aimed to validate our Exhaustion Model in cancer samples 
that are expected to have differing levels of exhaustion. Head 
and Neck Squamous Cell Carcinoma (HNSC) biopsies have a 
higher level of exhaustion in Human papillomavirus-positive 
(HPV+) patients than HPV-negative (HPV-) patients.19, 20 Using 
data from The Cancer Genome Atlas (TCGA), samples were 
grouped by HNSC HPV+ (n=36) and HNSC HPV- (n=241) 
status. 

T Cell State Estimations of CD8 and CD4 T Cell Exhaustion Estimation in Admixtures
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Figure 4. Exhaustion Estimation of Head and Neck Squamous Cell 
Carcinoma TCGA Samples
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T Cell Exhaustion Estimation of HPV Status

By comparing expression data to the five Health Expression 
Models we estimated the level of exhaustion for each sample 
(y-axis). Figure 4 shows that indeed, our models estimate 
statistically more exhaustion (Student’s t-test; p-value < 
0.001) in HNSC samples with HPV+ status (median = 17; blue 
box) versus those with HPV-status (median = 8; orange box). 
These results show that our exhaustion models corroborate 
primary research findings in “real world” data. Gene Set 
Enrichment Analysis (GSEA) was used to validate the higher 
exhaustion state for HNSC HPV+ relative to HNSC HPV- 
samples in the TCGA dataset (data not shown).

Conclusion
In this work, we showed how novel Health Expression 
Models can be used to estimate five different T cell states: 
Unstimulated, Activation, Exhaustion, Central Memory, and 
Effector Memory. These states were validated in an in vitro 
model of T Cell activation and chronic stimulation, as well as in 
purified PBMC samples. We further validated these results in 
complex admixtures derived from fully exhausted T cells and 
tumor derived CD45- cells or PBMC cells. Finally, we showed 
the utility of the Exhaustion Model in measuring a relevant 
difference in exhaustion in “real world” HNSC tumor samples. 

The validated Health Expression Models presented here offer a 
unique way to measure T cell functional states. With regards to 
measuring T cell exhaustion, this technique can provide a more 
direct measurement of T cell state than traditional functional 
assays and obviate several different tools and workflows. In 
addition, since this technique is based on a Health Expression 
Model derived from RNA, it can be applied to FFPE samples 
which comprise ~95% of the world’s clinical samples. These T 
cell State Models offer a new capability to aid researchers in the 
development of new immuno-oncology and cell therapies.
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